量子力学的基本理论是什么?

2024-05-19 02:51

1. 量子力学的基本理论是什么?

原理1:被测体系所有可能状态由一个可分的希尔伯特空间描述。概念1:希尔伯特空间。完备的复内积空间叫做希尔伯特空间。内积是线性空间上的一个正定的、共轭对称的、半共轭线性半线性的二元函数,它给线性空间带来了正交,带来了长度,也带来了拓扑。对于无限维空间,拓扑决定了空间的结构,它可以看出一个空间是否完备,不完备的空间中存在空洞,只有填补了空洞,才有可能使得:1.存在一组正交归
一基,使得任何态矢量都可以在基上展开。2.任何一个态矢量都一一对应着一个有界线性泛函。这就是完备性,没有这个保证,我们无法让任何态表示成一些基本态的叠加,我们无法认为左右矢是一一对应的。概念2:可分。有可数的稠密子集的拓扑空间叫做可分的。可数是指有限或者可以与自然数建立一一映射,虽然这个集合是无限的,但我们可以把元素一个一个排开,从第一个,第二个,第三个,无限地排下去。整数可数、有理数可数、代数数可数、实数不可数。稠密是指此集合的闭包是全空间。对于距离空间,稠密等价于,对于任意点A和任意小的距离d,我都可以在此集合中找到一个点,使它与A的距离小于d。有理数在实数中稠密,所以实数是可分的。可分的希尔伯特空间总有可数的正交归一基,总有一个矢量,它与所有基都不正交。不可分的希尔伯特空间,有不可数个正交归一基,但任意矢量至多与可数个基不正交。也就是说,只有可分的空间,我才敢断言,存在一个态矢量,它在所有基上的分量都不为0!概念3:态矢量和态可分希尔伯特空间中的任何一个矢量,都叫做态矢量,而共线的态矢量描述了同一个态。|X>和k|X>是同一个态。与非0矢量|X>共线的所有矢量,叫做线性空间中的一条射线,态与射线是一一对应的。原理2:可观测的物理量,可以由希尔伯特空间中的一个稠定自伴算子来描述。由于右矢(希尔伯特空间中的点)与左矢(希尔伯特空间上的有界线性泛函)是一一对应的,那么我们可以问及这么一个问题,任何一个算子A,是否有一个算子B使得:这个B叫做A的伴算子,记作。其中D(B)是B的定义域。就像函数有定义域,算子也有定义域,如果算子的定义域是全空间的稠密子空间,这个算子叫做稠定的。稠密的子空间中存在着全空间的基,只是由于这个子空间不是闭子空间,它有漏洞。如果我们重新定义内积:那么A的定义域虽然依照原来的内积不是闭的,但可能对于这个新的内积是闭的,如果这样我们称A是闭的。如果A比A'的定义域大一点,但在A‘的定义域D(A')中,A和A’相等,即它们作用于D(A')中任意矢量都有相同的结果,我们称A‘是A的部分算子。两个算子相等是指它们有相同的定义域,而且对定义域中任何矢量作用后有相同的结果。对称算子是指它是它的伴算子的部分算子;自伴算子与它的伴算子严格相等。物理上的“厄米算符”虽然从文字上是指数学上的“对称算子”,但由于物理书都没有太考虑算子的定义域问题,而且强调“厄米算符”有实数观测值,应当把物理书中的“厄米算符”理解为自伴算子。原理3:物理量的观测值,是它的谱点,物理量观测值处于集合X中的概率等于,其中E是该物理量对应的谱族,x是系统所处的状态对应的一个归一化态矢量。概念1:谱算子A的预解式定义为,使得预解式在全空间都有定义的,叫做算子A的正则点,其他的点叫做谱点。谱包括:1.点谱,不是单射,所以它的逆不存在。2.连续谱,不是满射,所以它有逆,但逆的定义域不是全空间,但是全空间的稠密子空间;3.剩余谱,不是满射,它的值域也不在全空间稠密。对自伴算子,也就是物理量而言,剩余谱为空集,所以只有点谱和连续谱,而且其谱集是实数集的子集。概念2:谱族谱族是一个把代数中的集合映射为希尔伯特空间中的正交投影算子的映射。投影算子是满足的算子。自伴的投影算子叫做正交投影算子,它是有界的,除0算子外,其界为1。谱族满足3个性质:1.任意可数个不相交集合满足;2.空集的谱族等于零算子;3.全集的谱族等于恒等算子。注意两个正交投影算子之和为投影算子,当且仅当它们之积为0算子。概念3:自伴算子对应的谱族数学家冯诺依曼(对就是那个后来搞计算机的那个)证明了:任何一个稠定的自伴算子A都对应着一个唯一的谱族,使得:积分空间是算子A的谱集。这个和被测体系的归一化态矢量|x>构成了一个概率测度:这个概率就是当系统处于|x>状态,物理量A的测值在X中的概率。冯诺依曼的著作《量子力学的数学原理》讨论了自伴算子的谱分解,并赋予了量子力学严格的数学基础。原理4:处于|x>描述的状态的体系,在观测到结果之后,状态变为。这个过程叫做量子态的坍缩。量子态坍缩,与唯心主义无关,因为观测任何系统都必须使用物质的工具,在观测的过程中,探测仪器不可避免地要与被测系统发生相互作用。要观测粒子的自旋,必须外加磁场,要观测粒子的能量和动量,必须用另一个粒子去轰击它。观测结果不一定是个实数,也有可能是一个实数的集合,因为观测总是存在误差。如果空间不是离散的,意味着我们不可能找到一个尺度,它足以分辨任意两个点。所以测量一个粒子的位置,我们总是需要带着误差。这意味着位置这个物理量对应的自伴算子,没有点谱,只有连续谱。原理5:对系统的任何操作,可以视为对描述系统的态矢量做了一个幺正变换。物理上的幺正变换,数学上叫做酉算子。如果算子U能够保持矢量的内积不变:它被称为等距算子,而可逆的等距算子称为酉算子。酉算子的逆等于他的伴算子,它的逆也是酉算子。时间演化,也是一种幺正变换:幺正性要求,无穷小生成元H,是自伴的,它自然导出薛定谔方程:原理6:交换两个全同粒子的状态,不改变系统的状态。粒子置换算子作用于全同粒子系统,结果等于乘上了一个复数因子,幺正性要求这个因子的模为1。其中复因子为1的叫做玻色子,复因子为-1的叫做费米子。目前我们只看到了这两种粒子。也有人猜测这个因子还能为其他复数,这种粒子称为任意子。

量子力学的基本理论是什么?

2. 量子力学的基本理论是什么?

量子力学的基本原理包括 量子态的概念, 运动方程、理论概念和观测物理量之间的对应规则和物理原理。
在量子力学中,一个 物理体系的状态由 状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个 线性微分方程,该方程预言体系的行为, 物理量由满足一定条件的、代表某种运算的 算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的 本征方程决定,测量的 期望值由一个包含该算符的 积分方程计算。 (一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和 亚原子的各种现象。
根据 狄拉克符号表示,状态函数,用表示,状态函数的 概率密度用ρ=表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。
状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。 态函数满足 薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量 本征值,H是 哈密顿算子。
于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

3. 量子力学基本原理是什么?

量子芝诺效应是量子力学的一个基本原理

量子力学基本原理是什么?

4. 量子力学公式是什么?

量子力学公式是m1v1+m2v2=m1v1'+m2v2'。如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。动量守恒定律是自然界中最重要最普遍的守恒定律之一,既适用于宏观物体,也适用于微观粒子,既适用于低速运动物体,也适用于高速运动物体。

动量守恒条件的理解
动量守恒定律成立的条件是系统不受外力或所受外力的合力为零,系统的内力远大于外力,系统在某一方向上不受外力或所受外力的合力为0。动量守恒定律的适用条件是普遍的,当系统所受的合外力不为零时,系统的总动量不守恒,但是合外力在某个方向上的分量为零时,那么在该方向上系统的动量分量是守恒的。

5. 量子力学基本理论

  一、哥本哈根量子力学诠释 
   量子力学是研究微观粒子的运动状态和运动规律,微观粒子电子、中子、质子,夸克和量子一样都是量子力学的研究范畴,但是实体粒子和量子是不同的,实体粒子有质量,而量子是能量子,它是没有静止质量的。量子力学是在20世纪初由玻尔、海森堡、薛定谔、泡利、普朗克等物理学家建立的,他们组成了哥本哈根学派,哥本哈根诠释是目前对量子力学本质的正统解释。爱因斯坦的光子理论学说推动和发展了量子力学。哥本哈根对量子力学的诠释,就是认为微观粒子在微观空间中的运动状态是不确定的,运动状态可以用波函数来描述,薛定谔方程的波函数Ψ(x、y、z、t),可以计算粒子在微观空间的分布概率。泡利量子理论的原子轨道就是波函数的描述行为,通过薛定谔方程计算得到原子核外电子的原子轨道和原子轨道量子数。原子核外电子在空间分布状态是不确定的,电子单缝衍射,相同的电子通过狭缝射在屏幕上,随着电子数目的增多,电子以不同的概率分布呈现出明暗条纹,这些都说明了粒子在微观空间中呈概率分布的,电子在某时刻它的运动状态是不确定的。
   在爱因斯坦看来,波函数概率描述电子的轨道并不是电子真实的运动情况,电子的运动状态是精确的,准确的,用概率描述自然现象只是人在研究微观粒子的过程中采用的一种不得已的手段。哥本哈根学派总是用概率粗略的描述一群电子的运动规律,而不能准确地描述单个电子真实的运动规律,这只能说明量子力学是不完备的,真正完备的量子力学肯定可以描述单个电子精确的运动规律。爱因斯坦反对哥本哈根诠释中的不确定原理,所以他说上帝不会掷骰子。他对电子的概率分布理论不满,爱因斯坦认为核外电子在某个时刻的位置和速度都是可以准确测定的,只是没有找到准确测定的方法和完整的底层理论。
    二、薛定谔方程 
   量子力学是研究微观粒子的状态和运动的规律,薛定谔方程是描述微观粒子运动状态的基本方程。微观粒子在空间某时刻的位置是不确定的,是随机的,薛定谔方程的波函数就是用来描述电子在空间的分布概率,薛定谔方程表达式。
      薛定谔方程波函数ψ(x、y、z、t),粒子势能函数V(x、y、z、t)都是时间和位置的函数,h普朗克常数,i虚数单位,m粒子质量。
   波函数ψ模的平方表示粒子在t时刻在某位置出现的概率,也就是粒子的概率密度,而波函数Ψ本身是概率的平方根,是一个非物理量,本身没有物理意义,只是描述粒子在空间分布的概率波动。薛定谔方程,描述了微观世界粒子的运动状态和运动规律,牛顿定律描述了宏观世界物体的运动状态和运动规律。薛定萼方程可以计算原子核外电子的分布概率,计算电子层的原子轨道和原子轨道的量子数。
    三、薛定谔的猫 
   薛定谔猫的实验是将一只猫关在一个箱子里,箱子里有一个瓶子装有氰化钾,还有一个瓶子装有放射性镭,镭原子核衰变存在几率,如果镭发生衰变,就会释放出中子触发机关,打碎装有氰化物的瓶子,这样一来猫就会死,如果镭不衰变就不会释放出中子,装有氰化物的瓶子就不会碎,猫就能活。在箱子门没有打开前,猫可能死也可能活概率为50%,处于生死的叠加态,当门打开后这种叠加态就坍塌成一种确定的状态。用薛定谔的猫比喻微观粒子状态,在没有测量以前粒子的位置是不确定的,可能在不同的位置,粒子状态处于叠加态,当被测量后,量子的位置就被确定了,也就是说粒子的叠加态坍塌成一种确定状态。
   薛定谔的猫,常用来形容不确定的事物,比喻一种事件,在没有确定之前,可能是A也可能是B,处于AB的叠加态,当经过验证后,叠加态就能坍塌成一种确定的事件。
    四、泡利原理 
   泡利不相容原理是原子物理和分子物理的基本理论,也是量子力学的重要基础,泡利的量子理论是研究原子核外电子的分布规律及电子层的复杂结构。通过薛定谔方程波函数ψ(x、y、z、t)求解和统计,得到了原子轨道和原子轨道四个量子数,薛定谔方程对于简单系统,如氢原子中电子的状态薛定谔方程能准确求解,对于复杂系统,如z个电子的原子,由于电子受屏蔽效应相互作用势能会发生改变,所以只能近似求解。原子轨道和轨道量子数就是薛定谔方程的近似解。原子轨道的四个量子数决定了电子的运动状态,其中n(主量子数),决定了电子能级;l(角量子数),决定了亚层轨道的形状和电子的角动量,电子运动的角动量和电子的角量子数有关,M= l(l+1)*(h/2π) ,l=0,1,2,……。l 越大,角动量越大,能量越大。m(磁量子数),表示亚层的原子轨道,决定了原子轨道在空间的伸展方向;ms自旋量子数,表示原子轨道两个电子的自旋方向。四个量子数决定了电子的能量、轨道形状、伸展方向和电子自旋方向,也就是说决定了电子在空间中的状态。泡利原理可表述在原子内不可能有两个或两个以上的电子具有完全相同的4个量子数,或者说在量子数m,l,n相同情况下,一个原子轨道上最多可容纳两个电子,而这两个电子的自旋方向必须相反。
   泡利不相容原理揭示了原子复杂的电子层结构,非常方便地解释不同原子之间化学键的结合机理和相互作用的原理。元素的化学性质与原子结构最外层的电子数有关,不同的元素如果最外层的电子的数量相同,则所表现出的性质相似,周期表就是依据这些原理编制出来的。
    五、海森堡的测不准原理 
   测量粒子在微观空间某时刻的位置和速度,我们通过仪器发射一定频率的光子来测量,当光子去照射电子,光子和电子发生干扰作用,假如你先测量电子的位置,由于光子对电子的作用,这时它的运动速度就发生了变化,所以你在测量位置的同时,测量的速度肯定有很大的误差,并且光子的频率越大,测量位置就会越准确,而测量的速度就越不准确;反过来你先测量速度,同样会对位置产生很大的影响。海森堡测不准原理 x p   h/4π(p动量),意思是测量的位置和动量误差乘积是个确定的常数,说明不能同时准确测量电子的速度和位置,当速度测量误差越小,位置测量的误差就越大;位置测量误差越小,速度测量误差就越大。这就是海森堡测不准原理。测不准原理不是仪器精度的问题,也不是方法问题,而是在仪器测量时光子对测定粒子有干扰作用。
    六、爱因斯坦的光子理论 
   光子理论由爱因斯坦提出(建立在普朗克能量子的概念上),爱因斯坦的量子理论推动了量子力学的发展。量子就是能量子,光子就是量子,量子和实体粒子不同,量子没有静止质量,实体粒子如电子、质子、中子、夸克等有静止质量,光子的能量E hν(ν为频率,h为普朗克常量),光子的能量E=mc²(m是光子的运动质量),结合E=hν,可以得到光子的动量p=mc=hν/c。光子是组成光的最小能量单位。这些就是爱因斯坦的光子理论。
   当物质受到光的照射时,如果光子的能量满足原子的能级差hv E₂-E₁,原子就会吸收这个光子,电子从能级E₁跳跃到能级E₂轨道上处于激发态,激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回到低能级E₁上,并将电子跃迁时所吸收的能量以光子的形式释放出去。当原子吸收的光子能量大于电子的逸出功,电子就会发生电离产生光电流。这就是爱因斯坦的光电理论。

量子力学基本理论

6. 量子力学基本原理是什么?

量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。
量子力学为物理学理论,是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。它与相对论一起构成现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等学科和许多近代技术中得到广泛应用。
量子力学基本的数学框架建立于:量子态的描述和统计诠释、运动方程、观测物理量之间的对应规则、测量公设、全同粒子公设的基础上。
在量子力学中,一个物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用。

7. 量子力学基本理论

量子力学

“量子”一词意指“一个量”或“一个离散的量”。在日常生活范围里,我们已经习惯于这样的概念,即:一个物体的性质,如它的大小、重量、颜色、温度、表面积以及运动,全都可以从一物体到另一物体以连续的方式变化着。例如,在各种形状、大小与颜色的苹果之间并无显著的等级。

然而,在原子范围内,事情是极不相同的。原子粒子的性质,如它们的运动、能量和自旋,并不总是显示出类似的连续变化,而是可以相差一些离散的量。经典牛顿力学的一个假设是:物质的性质是可以连续变化的。当物理学家们发现这个观念在原子范围内失效时,他们不得不设计一种全新的力学体系——量子力学,以说明标志物质的原子特征的团粒性。

量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。

量子力学
维基百科,自由的百科全书
量子力学理论和相对论理论是现代物理学的两大基本支柱,经典力学奠定了现代物理学的基础,但对於高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。

量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特徵,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。

量子力学和资讯科学的结合产生了一门新的学科——量子资讯科学。
望赞个

量子力学基本理论

8. 什么是量子力学理论

量子力学(英语:quantum mechanics;或称量子论)是描述微观物质(原子、亚原子粒子)行为的物理学理论,量子力学是我们理解除万有引力之外的所有基本力(电磁相互作用、强相互作用、弱相互作用)的基础。
量子力学是许多物理学分支的基础,包括电磁学、粒子物理、凝聚态物理以及宇宙学的部分内容。量子力学也是化学键理论、结构生物学以及电子学等学科的基础。

量子力学主要是用来描述微观下的行为,所描述的粒子现象无法精确地以经典力学诠释。例如:根据哥本哈根诠释,一个粒子在被观测之前,不具有任何物理性质,然而被观测之后,依测量仪器而定,可能观测到其粒子性质,也可能观测到其波动性质,或者观测到一部分粒子性质一部分波动性质,此即波粒二象性。
量子力学始于20世纪初马克斯·普朗克和尼尔斯·玻尔的开创性工作,马克斯·玻恩于1924年创造了“量子力学”一词。因其成功的解释了经典力学无法解释的实验现象,并精确地预言了此后的一些发现,物理学界开始广泛接受这个新理论。量子力学早期的一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。
在量子力学的形式中,系统在给定时间的状态由复波函数描述,也称为复向量空间中的态向量。[24] 这个抽象的数学对象允许计算具体实验结果的概率。例如,它允许计算在特定时间在原子核周围的特定区域找到电子的概率。与经典力学相反,人们永远无法以任意精度同时预测共轭物理量,如位置和动量。例如,电子可以被认为(以一定的概率)位于给定空间区域内的某处,但它们的确切位置未知。
恒定概率密度的轮廓,通常被称为“云”,可以在原子核周围绘制,用以概念化电子最有可能的位置。海森堡的不确定性原理量化了由于粒子的共轭动量而无法精确定位粒子的能力。[25]
最新文章
热门文章
推荐阅读