螺旋与生命有什么关系?

2024-05-05 13:57

1. 螺旋与生命有什么关系?

20世纪50年代,当DNA双螺旋结构被发现之后,生命与螺旋的关系引起了世人的关注。
各种反刍动物(如牛、羊)的头上,大都长着一对螺旋形弯角。田螺、蜗牛的外壳,也都呈现为美丽的对数螺旋形。这些形象都表明,生命和螺旋之间的确存在着特殊的联系。科学家们对此也作出了不少有趣的解释。
随着分子生物学的兴起,学者们进一步发现,生命和螺旋之间,不是人们所想像的简单的关系。1950年,著名生化学家鲍林首先提出了蛋白质分子的多肽长链是螺旋形结构,并把它定名为α—螺旋。其后人们发现,不但纤维状蛋白质有α—螺旋,而且球状蛋白也有α—螺旋。
此后的发现又进一步证明,许多大分子都有形成螺旋的倾向。比如,直链淀粉这一多聚酯是螺旋状结构;生物膜中心磷酯也能形成双股或单股螺旋;著名的DNA分子是由条状反身平行的多核苷酸链所组成的。这些发现更加强烈地吸引着人们去探索生命与螺旋之间的奥秘。
为什么黑人都长有一头卷发,而黄色人种却绝大多数长着硬直型头发呢?原来,黑色人种的角朊蛋白结构呈螺旋形,而黄色人种的角朊蛋白结构是直形的,于是在宏观上就呈现出明显的不同。
总之,不管从宏观上还是微观上看,螺旋是生命的最基本形态。至于为什么会这样,目前还没有人揭开这个谜。

螺旋与生命有什么关系?

2. 为什么生物都喜欢螺旋线?

大约在2000多年以前,古希腊数学和力学家阿基米德在他的著作《论螺线》中就对平面等距螺线的几何性质作了详尽的讨论。人们称之为“阿基米德螺线”,后来数学家们又发现了对数螺线、双曲螺线、圆柱螺线、圆锥螺线等。
螺旋线是一种很奇妙的线,同角一样,无论你把它放大或是缩小,它的形状都不会改变。大自然界中,我们经常可以看到它美丽的身影。最典型的螺旋线当然是陆上的螺丝或海里的各种海螺,它们是螺旋线的正宗“粉丝”,姓名里就带一个“螺”字,而且它们的壳全都是螺旋形的。
牵牛花藤喜欢向右旋转着往上攀爬,这种右旋,数学上称之为顺时针旋转。大部分呈螺旋状上爬的植物是右旋的,少数植物是“左撇子”,比如五味子的藤蔓就是左旋而上。还有很少数的植物“左右开弓”,没有定势。比如葡萄卷住架子攀爬时,它的卷须就是忽左忽右,没什么规律。
牵牛花藤喜欢右旋攀爬

向日葵籽以螺旋形状排列在它的花盘上;车前子的叶片不但呈螺旋线状排列,而且其间的夹角为137°30′,只有这样,每片叶子才可能得到最多的阳光,有利于良好地通风。
牛角和蜗牛壳更奇妙,它们增生组织的几何顺序,竟然是标准的对数螺旋线。这两种动物的壳一部分是旧的,一部分是新的。新的部分长在旧的部分,新增生出来的每一部分,都是严格地按照原先已有的对数螺旋结构增生,从不改变,形成对数螺旋的形状。
在生活中,我们不只可以看到凝固的螺旋线,还可以观察到动感的螺旋线。
飞蛾一看到自己的死对头蜻蜓、蝙蝠等,马上以螺旋线的方式飞行,敌人被它绕得头晕了,自然不容易捉住它;一只停留在圆柱表面的蜘蛛,要捕捉这个网表面上停留的苍蝇,它不会沿直线距离而上,而是会沿着螺旋线前行;蝙蝠从高处往下飞,会按照锥形螺旋线的路径飞行。从我们所处的银河系来说,周围的星体都是围绕圆心呈螺旋状向外扩展。看来无论是植物还是动物,庞然大物还是肉眼看不见的分子,它们都喜欢螺旋线。
在显微镜下,我们可以看到糖分子的几何形状都是右旋的。近些年来,有人合成了左旋糖。这种糖吃起来很甜,却不会产生热量。因为我们的身体只接受存在于自然界的右旋糖,对左旋糖“不认识”,所以对它不“感冒”。所以左旋糖对于患糖尿病类的病人来说,无疑是个福音,既能满足他们吃甜食的欲望,又不会被肌体消化吸收。我们每个人的头发都有一个“旋”,有的还有两个或两个以上。这种旋有的是左旋,有的是右旋。为什么要长成“旋”这个螺旋形状呢?原来,这是老祖宗遗传给我们的“财富”。它可以使雨水顺着一定的方向淌掉,犹如披上了一件蓑衣;而且容易使毛发排列紧密,避免有害昆虫的叮咬。还有人认为,这样可以起到良好的保温作用。
很多生物都喜欢螺旋线

3. 螺旋线的螺旋线在生活中的体现

你如果有兴趣的话,可以去观察一下蜘蛛网,因为蜘蛛网是自然界中分布很广,而且给人印象深刻的一种螺旋结构。蜘蛛网的结构充分地说明了蜘蛛是一个多么了不起的、有着奇妙螺旋概念的小生命啊!车前草的叶片也是螺旋状排列,其间夹角为137度、30度、38度。这样的叶序排列,可以使叶片获得最大的采光量,且得到良好的通风。其实,植物叶子在茎上的排列,一般都是螺旋状。此外,向日葵籽在盘上的排列也是螺旋式的。人的头发是从头皮毛囊中斜着生长出来的,它循着一定的方向形成旋涡状,这就是发旋,且有右旋和左旋之别。实际上,发旋是长在体表的毛旋,能使毛发顺着一定的方向生长。在野生兽类动物中,毛旋具有保护自身和适应环境的作用。它可使雨水顺着一定的方向淌掉,犹如披上了一件蓑衣一般;它们排列紧密,可避免有害昆虫的叮咬;除此,还有良好的保温作用。人类头发的这些作用虽然已退化到微不足道的地步,但其形式却保留了下来。 螺旋线被广泛应用于各个方面,如机械上的螺杆、螺帽、螺钉和日常用品的螺丝扣等。枪膛中的膛线也是螺旋线,就连一些楼梯也是螺旋状的。被称为“世界七大奇观”之一的意大利比萨斜塔的楼梯,便是294阶的螺旋线。美国加州设计师还向车前草借鉴了采光原理,设计了一幢13层的螺旋状排列的大楼,结果证明,每个房间都能得到充足的阳光。

螺旋线的螺旋线在生活中的体现

4. 生命为何偏爱螺旋结构呢?

浩繁纷杂的生物尽管千差万别,但不论哪个种类,从最小的病毒到大型的哺乳动物,都毫无例外地能把自己的性状一代代地传承下去;而无论亲代与子代,还是在子代每个个体之间,又总会有些差别,即便是双胞胎也不例外。人们曾用“种瓜得瓜,种豆得豆”和“一母生九子,九子各别”的谚语,生动形象地概括了存在于一切生物中的这一自然现象,并为揭开遗传、变异之谜进行了不懈的努力。
17世纪末,就有人提出了“预成论”的观点,认为生物之所以能把自己的性状特征传给后代,主要是因为在性细胞(精子或卵细胞)中,预先包含着一个微小的新的个体雏形。精原论者认为,这种“微生体”存在于精子当中;而卵原论者则认为,这种“微生体”存在于卵子之中。
然而,这种观点很快就被事实所推翻。因为无论在精子还是卵子中,人们根本见不到这种“雏形”。取而代之的理论是德国胚胎学家沃尔夫提出的“渐成论”。他认为,生物体的任何组织和器官都是在个体发育过程中逐渐形成的。但遗传变异的操纵者究竟是何物?仍然是一个谜。
直到1865年,奥地利遗传学家孟德尔在阐述他所发现的分离法则和自由组合法则时,才第一次提出了“遗传因子”(后被称作为基因)的概念,并认为,这种“遗传因子”存在于细胞当中,是决定遗传性状的物质基础。
1909年,丹麦植物学家约翰逊用“基因”一词代替了孟德尔的“遗传因子”。从此,基因便被看作是生物性状的决定者、生物遗传变异的结构和功能的基本单位。
1926年,美国遗传学家摩尔根发表了著名的《基因论》。他和其他学者用大量实验证明,基因是组成染色体的遗传单位,它在染色体上占有一定的位置和空间,呈直线排列。这样,就使孟德尔提出的关于遗传因子的假说落到了具体的遗传物质——基因上,并为后来进一步研究基因结构和功能奠定了理论基础。
尽管如此,当时人们并不知道基因究竟是一种什么物质。直至20世纪40年代,当科学家搞清了核酸,特别是脱氧核糖核酸(简称DNA),是一切生物的遗传物质时,基因一词才有了确切的内容。
1951年,科学家在实验室里得到了DNA结晶;
1952年,得到DNAX射线衍射图谱,发现病毒DNA进入细菌细胞后,可以复制出病毒颗粒……
在此期间,有两件事情是对DNA双螺旋结构发现起到了直接的促进作用:一是美国加州大学森格尔教授发现了蛋白质分子的螺旋结构,给人以重要启示;一是X射线衍射技术在生物大分子结构研究中得到有效应用,提供了决定性的实验依据。
正是在这种科学背景和研究条件下,美国科学家沃森与英国科学家克里克合作,通过大量X射线衍射材料的分析研究,提出了DNA的双螺旋结构模型,并由此建立了遗传密码和模板学说。
此后,科学家们围绕DNA的结构和作用继续开展研究,也取得了一系列的重大进展,并于1961年成功破译了遗传密码,以无可辩驳的科学依据证实了DNA双螺旋结构的正确性,从而使沃林、克里克同威尔金斯一道于1962年获得诺贝尔医学生理学奖。
尽管人类设计建筑与马路时都喜欢笔直的线条,但大自然的选择并并不赞同,而更倾向于螺旋状的卷曲结构。小到决定生命形态的DNA结构,乃至关乎我们后天性状美丑的蛋白质结构,以及我们赖以生存的食物的主要组分淀粉等,无一例外都是螺旋结构。
生物的大分子DNA、蛋白质、淀粉、纤维素结构中,都存在着螺旋结构。而我们所熟知的遗传物质DNA,也是双螺旋结构,它包含着人体的遗传信息。在受精卵中,父系与母系的各一条链相结合,就诞生了综合二者信息的新的生命。不过,DNA最重要的结构是双螺旋结构,但也可能形成其他结构。当双螺旋体的一部分解开时,其中一条DNA链就可以折叠回去,形成了三螺旋或其他结构。
与DNA的双螺旋结构相比,蛋白质中的螺旋是由氨基酸经脱水组成的单链螺旋,蛋白质末端运动自由度较大,可以组成三圈螺旋,三圈螺旋还可以转变成折叠形状。从这种意义上来说,折叠是螺旋的一种特殊形式。
人体中的蛋白质就是螺旋与折叠结构复合而成的复杂结构。比如,人体中重要的蛋白质——胶原蛋白,就是由3条肽链拧成“草绳状”3股螺旋结构,其中每条肽链自身也是螺旋结构。我们知道,人体内有16%左右都是蛋白质,而胶原蛋白占体内蛋白质总量的30%~40%,主要存在于皮肤肌肉、骨骼、牙齿、内脏与眼睛等处。
除了遗传物质与蛋白质外,我们的主要食物淀粉的结构和所穿衣物(棉)中的主要成分棉纤维,也大多都是螺旋结构。
不仅生物大分子是螺旋的构型,有时整个生物体的形状或生物体的组成部分,也可能是螺旋体。我们熟悉的螺旋藻就是这样的一种生物,它的得名就是因为其形体在显微镜下观察时呈螺旋状的缘故。
螺旋藻是地球上最早出现的光合生物。研究表明,螺旋藻是所有已被发现的生物中营养成分最丰富、最全面、最均衡的海洋生物。它的细胞壁是由多糖类物质构成,极容易被人体所消化吸收,吸收率可达95%以上。此外,螺旋藻中还富含胡萝卜素、亚麻酸和亚油酸等活性物质,有清除血脂、疏通血管和保持血管弹性的作用,对防治心、脑血管疾病很有帮助。
寄居在人体胃内的幽门螺旋杆菌,也是因呈杆状、螺旋形而得名。胃液对许多细菌都具有强烈的杀伤力,但是对幽门螺旋杆菌却奈何不得。因为幽门螺旋杆菌是埋藏在胃壁表面的黏膜下方,可以分泌一种物质能中和周围环境中的强酸;而且,幽门螺旋杆菌很爱“挑衅”我们的免疫系统,常常会激怒免疫系统发动初步的无情攻击,导致发炎反应。因此,感染幽门螺旋杆菌的人常会出现没有症状的胃炎(即胃黏膜发炎)。人在进入中年之后,会很容易得这些病,这都是幽门螺旋杆菌的祸害所致。
除了上述这些生物体本身呈螺旋状外,有些生物还要借助螺旋形状来实现它们的独特功能。水黾就是这样一种生物,它会利用其腿部特殊的微纳米螺旋结构效应在水面上行动自如,即使在狂风暴雨和急速流动的水流中也不会沉没。这是因为这些取向的微米刚毛和螺旋状纳米沟槽的缝隙内,可以有效地吸附空气,在其表面形成一层稳定的气膜,阻碍水滴的浸润,从而表现出水黾腿的超疏水(即不浸水)特性。科学家在对水黾腿部的力学测量表明:仅仅一条腿在水面的最大支持力,就能达到其身体总重量的15倍。
由上面的叙说我们得知,大自然中几乎到处都存在着螺旋。而螺旋结构更是自然界最普遍的一种形状,许多在生物细胞中发现的微型结构都采用了这种构造。
那么,为什么大自然会如此偏爱这种结构呢?科学家对此给出了合理的解释。
美国宾州大学的兰德尔·卡缅教授指出,从本质上来说,在拥挤的细胞(如一个细胞里的DNA)中,非常长的分子聚成螺旋结构是一个比较合理的方式。而在细胞稠密而拥挤的环境中,长分子链经常采用规则的螺旋状构造。只所以有这样的构造,主要有2点好处:①可以让信息紧密地结合其中;②能够形成一个表面,允许其他微粒在一定的间隔处与它相结合。比如,DNA的双螺旋结构允许进行DNA转录和修复。
卡缅教授通过一个模型解释了这个问题:将一个可以随意变形、但不会断裂的管子浸入由硬的球体组成的混合物中,管子就如同一个存在于十分拥挤的细胞空间中的一个分子。观察发现,对于短小易变形的管子来说,U形结构的形成所需的能量最小,空间也最少;而它的U形结构,在几何学上与螺旋结构最为相近。
卡缅对此指出,分子中的螺旋结构是自然界能最佳地使用手中材料的一个例子。DNA由于受到细胞内的空间局限而采用双螺旋结构,就像是由于公寓空间局限而采用螺旋梯的设计一样。这就是生物大分子采取螺旋结构的合理的数学解释。然而至于为什么生物体也以螺旋结构的形状存在,原因还有待于进一步的研究。

5. 生命螺旋是怎么回事?

“螺旋——生命的曲线”,英国著名科学家柯克在研究了螺旋线与生命现象的关系后,曾感慨地说。此言不谬。


假若你是个有心人,你便会发现在生活中,应用螺旋线的例子俯拾皆是。


许多瓶与盖子的结合,靠的就是螺旋;欲开启一瓶法国干红,你必须借助一件带有螺旋线的工具;节假日去游乐场,你会发现你的孩子对高大的盘旋式滑梯很感兴趣,而那盘旋的轨迹便是螺旋;枪膛中的膛线、自来水龙头、钢笔、手电筒,以及自行车上的螺杆、螺钉、螺母等连接件和紧固件,也都离不开螺旋。


早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。


这种螺旋线在自然界中分布广泛。一只蚂蚁以不变的速度,在一个匀速旋转的唱片中心沿半径向外爬行,蚂蚁本身就描绘出一条螺旋线;一个停在圆柱表面上的蜘蛛,要扑食圆柱表面上的一只蚊子,它在圆柱表面上的最佳路径也是一条螺旋线;蝙蝠从高处下飞,却是按着另一种空间螺旋线——锥形螺旋线的路径飞行的。甚至星体的运转轨迹,有的也是螺旋线。


在对银河系中的气体密度进行为期3年的观察研究之后,日本国家天文台的中井直政博士认为,银河系是呈螺旋形的,即星体以圆心呈螺旋状向外扩展。


倘若你留心,你该知道牵牛花的藤总是向右旋转着往上爬的。科学上把这种右旋叫做“顺时针方向”。车前草的叶片也是螺旋状排列的,其间夹角为137度、30度、38度,这样的叶序排列,可以使相同的叶片获得最大的采光量,得到良好的通风。


其实,植物叶子在茎上的排列,一般都是螺旋状。此外,向日葵子在盘上的排列也是螺旋方式。


牛角同蜗牛壳一样,它们增生组织的几何顺序,竟是标准的对数螺旋线。奇怪的是,它们新增生出来的每一部分,都严格按照原先已有的对数螺旋结构增生,从不会改变,就像地球固定轨道围绕太阳旋转一样。


人的头发是从头发主囊中斜着生长出来的,它循着一定的方向形成漩涡状,这就是发旋,且有右旋和左旋之别。实际上,发旋是长在体表的毛旋,能使毛发顺着一定的方向生长。在野生兽类动物中,发旋(毛旋)具有保护自身和适应环境的作用,它可以使雨水顺着一定的方向消掉,就如披上了一层蓑衣,它们排列紧密,可避免有害昆虫的叮咬。此外,还有良好的保温作用。人类头发的这些作用虽然已经退化到微不足道的地步,其形式却保留了下来。


在自然界中,还有一些微观的生命螺旋需借助于电子显微镜方能看到。像我们平时吃的糖,无论它是用甘蔗汁制成的,还是用甜菜汁做的,它们的分子几何形状都是右旋的。近年来,人们合成了左旋糖,说也奇怪,这种糖只有甜味,却不产生热量。这是什么原因呢?科学家为我们揭开了这一秘密。原来,我们身体里的代谢酶只接受存在于自然界的右旋糖。


在人体内,一切氨基酸分子均是左旋,而淀粉分子则是右旋。传递生物遗传信息的脱氧核糖核酸(DNA),它巨大的分子有着盘梯式的双螺旋形状,这种螺旋从底部到顶端,一路都呈右旋。获得诺贝尔医学生理学奖的沃森,曾绘制出脱氧核糖核酸(DNA)双螺旋结构的分子模型,成为20世纪以来生物科学最伟大的发现之一。


难道螺旋线同生物的生长有什么内在的联系吗?为什么自然界中有这么多螺旋状的物体?它们为什么不能是其他形状?


科学家们尚无法解释,他们正从不同角度对自然界中的生命螺旋进行探索。

生命螺旋是怎么回事?

6. 螺旋是生命的基本形态吗?

20世纪50年代,当DNA双螺旋结构被发现之后,生命与螺旋的关系引起了世人的关注。
各种反刍动物(如牛、羊)的头上,大都长着一对螺旋形弯角。田螺、蜗牛的外壳,也都呈现为美丽的对数螺旋形。这些形象都表明,生命和螺旋之间的确存在着特殊的联系。科学家们对此也作出了不少有趣的解释。
随着分子生物学的兴起,学者们进一步发现,生命和螺旋之间,不是人们所想像的简单的关系。1950年,著名生化学家鲍林首先提出了蛋白质分子的多肽长链是螺旋形结构,并把它定名为α—螺旋。其后人们发现,不但纤维状蛋白质有α—螺旋,而且球状蛋白也有α—螺旋。
此后的发现又进一步证明,许多大分子都有形成螺旋的倾向。比如,直链淀粉这一多聚酯是螺旋状结构;生物膜中心磷酯也能形成双股或单股螺旋;著名的DNA分子是由条状反身平行的多核苷酸链所组成的。这些发现更加强烈地吸引着人们去探索生命与螺旋之间的奥秘。
为什么黑人都长有一头卷发,而黄色人种却绝大多数长着硬直型头发呢?原来,黑色人种的角朊蛋白结构呈螺旋形,而黄色人种的角朊蛋白结构是直形的,于是在宏观上就呈现出明显的不同。
总之,不管从宏观上还是微观上看,螺旋是生命的最基本形态。至于为什么会这样,目前还没有人揭开这个谜。